Skip to main content



57. Emmanuele, R., et al. “Lattice symmetry-guided charge transport in two-dimensional monolayers promotes triplet formation.” In submission, 2024.

56. Salij, A., et. al. (2024). “Theory predicts 2D chiral polaritons based on achiral fabry-pérot cavities using apparent circular dichroism.” Nature Communications 15, 340.

55. Xu, Q., et. al. (2024). “Strong photon-magnon coupling using a lithographically defined organic Ferrimagnet.” Advanced Science 2310032. 


54. Rodgers, L. V. H., et al. "Diamond surface functionalization via visible light-driven C-H activation for nanoscale quantum sensing" Submitted September 2023.

53. Zvi, U., et al. (2023). "Engineering spin coherence in core-shell diamond nanocrystals.." arXiv preprint arXiv:2310.15424. 

52. Youn-Zhou, J. & Koner, A. (2023). "Linear response of molecular polaritons." arXiv preprint arXiv:2310.15424. 

51. Zeng, H., (2023). "Control of photoswitching kinetics with strong light-matter coupling in a cavity." Journal of the American Chemical Society 145(36), 19655-19661.

50. Qiu, Y., (2023). "Enhancing coherence times of chromophore-radical molecular qubits and qudits by rational design." Journal of the American Chemical Society 145(47), 25903-25909.

49. Palmer, J. R., et al. (2023). "Oriented triplet excitons as long-lived electron spin qutrits in a molecular donor-acceptor single cocrystal." Journal of the American Chemical Society 146(1), 1089-1099.

48. Kong, Z., et al. (2023). "Near room-temperature intrinsic exchange bias in an fe intercalated zrse2 spin glass." Journal of the American Chemical Society 145(36), 20041-20052.

47. Eckvahl, H., et al. (2023). "Direct observation of chirality-induced spin selectivity in electron donor–acceptor molecules." Science 382(6667), 197-201.

46. Chen, T., et al. "A chiral microcavity based on apparent circular dichroism." ChemRxiv. Cambridge: Cambridge Open Engage. Working Paper, June 2023. https:// doi:10.26434/chemrxiv-2023-bqnl7

45. Candido, D. & Flatté, M. E. "Interplay between charge and spin noise in the near-surface theory of decoherence and relaxation of C3v symmetry qutrit spin-1 centers." Submitted March 2023. 

44. Utama, M. I. B., et al. (2023). “Mixed-dimensional heterostructures for quantum photonic science and technology.” MRS Bulletin 48, 905-913.

43. Luo, Y., et al. (2023). “Photo-induced halide redistribution in 2D halide perovskite lateral heterostructures.” Joule 7(10), 2376-2385. 

42. Han H., et al. (2023). “Spin-frustrated trisradical trication of prismcage.” Journal of the American Chemical Society 2023 145 (33), 18402-18413.

41. Kumar, S., et al. (2023). “Exciton annihilation in molecular aggregates suppressed through quantum interference.” Nature Chemistry 15, 1118–1126 (2023).

40. Terry Weatherly,  C. K., et al. (2023). “Theory predicts UV/vis-to-IR photonic down conversion mediated by excited state vibrational polaritons.” Nature Communications 14, 4804.

39. Pannir-Sivajothi, S. et al. (2023). “Molecular and solid-state topological polaritons induced by population imbalance.” Nanophotonics 12(15), 3109-3119. 

38. Koner, A., et al. (2023). “A path towards single molecule vibrational strong coupling in a Fabry-Pérot microcavity.” Chemical Science 14(28):7753-7761. 

37. Flor, B., et al. (2023). “Wavelength-dependent spin excitation with circularly polarized light in CdSe nanoplatelets.” The Journal of Physical Chemistry 127 (29), 14317-14325.

36. Tait C.E., et al. (2023). “Computational tools for the simulation and analysis of spin-polarized EPR spectra.” Journal of Magnetic Resonance 349:107410. 

35. Park, J. G., et al. (2023). “Permanent porosity in the room-temperature magnet and magnonic material V(TCNE)2.” ACS Central Science 9(4), 777-786.

34. Utama, M. I., et al. (2023). “Chemomechanical modification of quantum emission in monolayer WSe2."  Nature Communications 14, 2193. 

33. Nasiri Avanaki, K. & Schatz, G. C. (2023). “Generation of entangled-photons by a quantum dot cascade source in polarized cavities: Using cavity resonances to boost signals and preserve the entanglements.” Journal of Chemical Physics 158, 144106 (2023). 

32. Pérez-Sánchez J. B., et al. (2023). “Simulating molecular polaritons in the collective regime using few-molecule models.” Proc. Natl. Acad. Sci. U S A. 120(15):e2219223120.

31. Mao, H., et al. (2023). “Quantum gate operations on a spectrally addressable photogenerated molecular electron spin-qubit pair.” Journal of the American Chemical Society  145 (11), 6585-6593. 

30. Wasielewski, M. R. (2023). "Light-driven spin chemistry for quantum information science." Physics Today, 76(3), 28-34. 

29. Lu, S., et al. (2023). “Encapsulating semiconductor quantum dots in supramolecular cages enables ultrafast guest–host electron and vibrational energy transfer.” Journal of the American Chemical Society 145 (9), 5191-5202. 

28. Xu, D. D., et al. (2023). "Conversion of classical light emission from a nanoparticle‐strained WSe2 monolayer into quantum light emission via electron beam irradiation." Advanced Materials 25(5): 2208066.

27. Chen, JS., et al. (2023). “Long-lived electronic spin qubits in single-walled carbon nanotubes.” Nature Communications 14, 848. 

26. Qiu, Y., et al. (2023). “Optical spin polarization of a narrow-linewidth electron-spin qubit in a chromophore/stable-radical system.” Angewandte Chemie International Edition 62(6): e202214668. 


25. Wang, W., et al. (2022). "Utilizing ultraviolet photons to generate single-photon emitters in semiconductor monolayers." ACS Nano 16(12): 21240-21247.

24. Mao, H., et al. (2022). "Optical initialization of molecular qubit spin states using weak exchange coupling to photogenerated fullerene triplet states." The Journal of Physical Chemistry B 126(49): 10519-10527. 

23. Xu, Q., et al. “Strong photon-magnon coupling using a lithographically defined organic ferrimagnet,” Submitted December 2022. arXiv:2212.04423.

22. Pan, F., et al. (2022). "Active control of plasmonic–photonic interactions in a microbubble cavity." The Journal of Physical Chemistry C 126(48): 20470-20479.

21. ter Huurne, S. E. T., et al. (2022). "High-Frequency Sheet Conductance of Nanolayered WS2 Crystals for Two-Dimensional Nanodevices." Acs Applied NanoMaterials 5(10): 15557-15562.

20. Provazza, J. & Tempelaar, R. (2022). "Perturbation theory under the truncated Wigner approximation: How system-environment entanglement formation drives quantum decoherence." Physical Review A 106(4), A 106: 042406.

19. Chen, J. S., et al. (2022). "Room temperature lasing from semiconducting single-walled carbon nanotubes." Acs Nan16(10): 16776-16783.

18. Chang, W. J., et al. (2022). "Enhancement of emission from lanthanide dopants in perovskite nanocrystals through a temperature-dependent phase transformation of the perovskite lattice." Journal of Physical Chemistry C 126(36): 15247-15253.

17. Leighton O. Jones, Tumpa Sadhukhan, and George C. Schatz. (2022). “Localized π Surface States on 2D molybdenum disulfide from carbene-functionalization as a qubit design strategy.” ACS Physical Chemistry Au 2022 2 (4), 277-281. 

16. Maylander, M., et al. (2022). "Accessing the triplet state of perylenediimide by radical-enhanced intersystem crossing." Chemical Science13(22): 6732-6743.

15. Sadhukhan, T. & Schatz, G. C. (2022). "Generating bright emissive states by modulating the bandgap of monolayer tungsten diselenide." Published as part of The Journal of Physical Chemistry virtual special issue "Kankan Bhattacharyya Festschrift." Journal of Physical Chemistry C 126(12): 5598-5606.

14. Park, J. E., et al. (2022). "Polariton dynamics in two-dimensional ruddlesden-popper perovskites strongly coupled with plasmonic lattices." Acs Nano 16(3): 3917-3925.

13. Liu, P. F., et al. (2022). "Low index contrast valley hall topological photonics for robust transport in the visible spectrum." Acs Photonics 9(3): 922-928

12. Chen, X. F., et al. (2022). "Direct observation of modulated radical spin states in metal-organic frameworks by controlled flexibility." Journal of the American Chemical Society 144(6): 2685-2693.

11. Candido, D. R. & Flatté, M. E. Theory of spin center sensing of diffusion. Submitted to Physical Review Letters, January 2022.

10. Bancroft, L., et al. (2022). "Effect of the time delay between spin state preparation and measurement on electron spin teleportation in a covalent donor-acceptor-radical system." Journal of Physical Chemistry Letters 13(1): 156-160.


9. Salij, A., et al. (2021). "Theory of apparent circular dichroism reveals the origin of inverted and noninverted chiroptical response under sample flipping." Journal of the American Chemical Society 143(51): 21519-21531.

8. Morrow, D. J. and X. D. Ma (2021). "Trapping interlayer excitons in van der Waals heterostructures by potential arrays." Physical Review B 104(19): 195302.           

7. Chang, W. J., et al. (2021). "Photoredox-mediated sensitization of lanthanide dopants by perovskite nanocrystals." Journal of Physical Chemistry C 125(46): 25634-25642.

6. Harvey, S. M. and M. R. Wasielewski (2021). "Photogenerated spin-correlated radical pairs: from photosynthetic energy transduction to quantum information science." Journal of the American Chemical Society 143(38): 15508-15529.

5. Wu, H., et al. (2021). "A contorted nanographene shelter." Nature Communications 12(1), 5191.

4. Perez-Gonzalez, A., et al. (2021). "Exploring the role of the central carbide of the nitrogenase active-site FeMo-cofactor through targeted C-13 labeling and ENDOR spectroscopy." Journal of the American Chemical Society 143(24): 9183-9190.

3. Murphy, R. A., et al. (2021). "A hard permanent magnet through molecular design." Communications Chemistry 4(1).           

2. Peng, L. T., et al. (2021). "Observation of biexciton emission from single semiconductor nanoplatelets." Physical Review Materials 5(5).        

1. Maylander, M., et al. (2021). "Exploring photogenerated molecular quartet states as spin qubits and qudits." Journal of the American Chemical Society 143(18): 7050-7058.